23–2 Apply ## Barbecuing with Enthalpy Adrian is cooking hamburgers on an outdoor propane-burning grill. From chemistry class, he knows that the reaction of propane (C₃H₈) with oxygen is written as $$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$$ Adrian also knows that the change in enthalpy for this reaction is $$\Delta H^{\circ} = -2043 \text{ kJ}$$ Answer each of the following questions about Adrian's barbecue in the space provided. - 1. The second equation above assumes that the reactants in the first equation consist of 1 mole of C_1H_8 and 5 moles of O_2 , and that the products consist of 3 moles of CO_2 and 4 moles of H_2O . If you double the number of moles of reactants and let the reaction proceed to completion, what is the enthalpy change for the new reaction? Explain your answer. - **2.** Can you determine, from the sign of ΔH° , whether the reaction is endothermic or exothermic? If you did not know the value of ΔH° , what other evidence would help you determine whether this reaction is endothermic or exothermic? Explain your answers. - 3. What is the value of ΔH° for the reaction of water and carbon dioxide to form propane and oxygen? Is this reaction spontaneous or nonspontaneous? Is it exothermic or endothermic? Explain your answers. - 4. Complete the enthalpy diagram to the right for the reaction that Adrian is using to cook his hamburgers. Reaction Progress