| REACTION CATEGORY | SINGLE REPLACEMENT | | | | |--------------------------------|---|---|---|--| | REACTION DESCRIPTION | In these reactions, a free element reacts with a compound to form another compound and release one of the elements of the original compound in the elemental state. There are two different possibilities: 1. One cation (+ ion) replaces another. 2. One anion (- ion) replaces another. | | | | | REACTION FORMAT | 1. AB + C> CB + A
2. A + BC> BA + C | | | | | REACTION GUIDELINES | 1. In a single replacement reaction atoms of one element replacement atoms of a second element in a compound. Whether one metal will replace another metal from a compound can be determined by the relative reactivities of the two metals. To help us determine this, an activity series of metals arranges metals in o der of decreasing reactivity. A reactive metal will replace any metal listed below it in the activity series. | | | | | | | ACTIVITY SERIES
OF METALS | | | | | | METAL | SYMBOL | | | | | Lithium Potassium Calcium Sodium Magnesium Aluminum Zinc Iron Lead (Hydrogen) Copper Mercury Silver | Li
K
Ca
Na
Mg
Al
Zn
Fe
Pb
(H)*
Cu
Hg | | | | | from acids and v | to Na will replace H
water; from Mg to Pb
H from acids only. | | | | 2. A nonmetal can also replace another nonmetal from a compound. This replacement is usually limited to the halogens (F ₂ Cl ₂ , Br ₂ , and I ₂). The activity of the halogens decreases as yo go down the Group (17) of the periodic table. | | | | | REACTION GUIDELINE
EXAMPLES | 1. Mg + Zn(NO ₃) ₂ > Mg(NO ₃) ₂ + Zn Mg replaces Zn; Mg is above Zn on the chart Mg + 2 AgNO ₃ > Mg(NO ₃) ₂ + 2 Ag Mg replaces Ag; Mg is above Ag on the chart Mg + LiNO ₃ > No Reaction (NR) Mg cannot replace Li; Li is above Mg on the chart 2. Cl ₂ + 2NaBr> 2NaCl + Br ₂ | | | | ## **Practice Reactions:**